GitHub Copilot AI pair programmer: Asset or Liability?
Informations
Type:
article
Auteurs:
Arghavan Moradi Dakhel and Vahid Majdinasab and Amin Nikanjam and Foutse Khomh and Michel C. Desmara...
Pertinence:
Faible
Référence:
MORADIDAKHEL2023111734
Doi:
https://doi.org/10.1016/j.jss.2023.111734
Mots-clés:
Code completion, Language model, GitHub copilot, Testing
Url:
https://www.sciencedirect.com/science/article/pii/S0164121223001292
Date de publication:
12/2022
Résumé:
comparaison du code produit par copilot et un humain
Abstract:
Automatic program synthesis is a long-lasting dream in software engineering. Recently, a promising Deep Learning (DL) based solution, called Copilot, has been proposed by OpenAI and Microsoft as an industrial product. Although some studies evaluate the correctness of Copilot solutions and report its issues, more empirical evaluations are necessary to understand how developers can benefit from it effectively. In this paper, we study the capabilities of Copilot in two different programming tasks: (i) generating (and reproducing) correct and efficient solutions for fundamental algorithmic problems, and (ii) comparing Copilot’s proposed solutions with those of human programmers on a set of programming tasks. For the former, we assess the performance and functionality of Copilot in solving selected fundamental problems in computer science, like sorting and implementing data structures. In the latter, a dataset of programming problems with human-provided solutions is used. The results show that Copilot is capable of providing solutions for almost all fundamental algorithmic problems, however, some solutions are buggy and non-reproducible. Moreover, Copilot has some difficulties in combining multiple methods to generate a solution. Comparing Copilot to humans, our results show that the correct ratio of humans’ solutions is greater than Copilot’s suggestions, while the buggy solutions generated by Copilot require less effort to be repaired. Based on our findings, if Copilot is used by expert developers in software projects, it can become an asset since its suggestions could be comparable to humans’ contributions in terms of quality. However, Copilot can become a liability if it is used by novice developers who may fail to filter its buggy or non-optimal solutions due to a lack of expertise.
Pdf:
Lien pdf
Références
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Citations
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Mots-clés
4 mots-clés
Nom Nombre d'articles Actions
Language model 2
GitHub copilot 2
Code completion 1
Testing 1
Auteurs
1 auteurs
Nom Nombre d'articles Actions
Arghavan Moradi Dakhel and Vahid Majdinasab and Amin Nikanjam and Foutse Khomh and Michel C. Desmarais and Zhen Ming (Jack) Jiang 1