MenuCraft: Interactive Menu System Design with Large Language Models
Informations
Type:
misc
Auteurs:
Amir Hossein Kargaran and Nafiseh Nikeghbal and Abbas Heydarnoori and Hinrich Schütze
Pertinence:
Moyenne
Référence:
kargaran2023menucraft
Doi:
Mots-clés:
Url:
https://arxiv.org/abs/2303.04496
Date de publication:
03/2023
Résumé:
création de menu contextuels dans une conversation avec un llm
Abstract:
Menu system design is a challenging task involving many design options and various human factors. For example, one crucial factor that designers need to consider is the semantic and systematic relation of menu commands. However, capturing these relations can be challenging due to limited available resources. With the advancement of neural language models, large language models can utilize their vast pre-existing knowledge in designing and refining menu systems.
In this paper, we propose MenuCraft, an AI-assisted designer for menu design that enables collaboration between the designer and a dialogue system to design menus. MenuCraft offers an interactive language-based menu design tool that simplifies the menu design process and enables easy customization of design options. MenuCraft supports a variety of interactions through dialog that allows performing few-shot learning.
Pdf:
Lien pdf
Références
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Citations
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Mots-clés
0 mots-clés
Nom Nombre d'articles Actions
Pas encore de mot-clé
Auteurs
1 auteurs
Nom Nombre d'articles Actions
Amir Hossein Kargaran and Nafiseh Nikeghbal and Abbas Heydarnoori and Hinrich Schütze 1