QuickTA : Exploring the Design Space of Using Large Language Models to Provide Support to Students
Informations
Type:
misc
Auteurs:
Harsh Kumar, Joseph Jay Williams, Ilya Musabirov, Michael Liut
Pertinence:
Moyenne
Référence:
Doi:
Mots-clés:
Url:
https://tspace.library.utoronto.ca/handle/1807/127196
Date de publication:
03/2023
Résumé:
conversation avec un llm pour aider les étudiants dans leur apprentissage de la programmation
Abstract:
Pre-trained large language models (LLMs) show promise in providing support to students through dialogues. However, current research in LLM-based support has highlighted the need to involve different stakeholders (e.g., instructors, researchers, students) in the design and deployment of these interactions. Based on our formative interviews with students and the prior literature, we are designing a system for instructors to: (1) program LLMs according to the task, (2) provide support to students through a chat interface, and (3) collect student feedback and usage statistics to inform future deployments. In this work, we report on our ongoing development of the system, design considerations, possible use cases of the system, and the path to the deployment of the system for a database management course. We hope that other researchers could build on this work to design systems that enable human-AI collaboration when it comes to improving the learning outcomes of students.
Pdf:
Lien pdf
Références
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Citations
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Mots-clés
0 mots-clés
Nom Nombre d'articles Actions
Pas encore de mot-clé
Auteurs
4 auteurs
Nom Nombre d'articles Actions
Harsh Kumar 1
Michael Liut 1
Ilya Musabirov 1
Joseph Jay Williams 1