DataChat: Prototyping a Conversational Agent for Dataset Search and Visualization
Informations
Type:
misc
Auteurs:
Lizhou Fan and Sara Lafia and Lingyao Li and Fangyuan Yang and Libby Hemphill
Pertinence:
Moyenne
Référence:
fan2023datachat
Doi:
Mots-clés:
Url:
https://arxiv.org/abs/2305.18358
Date de publication:
05/2023
Résumé:
génération de visualisations interactives par conversation
Abstract:
Data users need relevant context and research expertise to effectively search for and identify relevant datasets. Leading data providers, such as the Inter-university Consortium for Political and Social Research (ICPSR), offer standardized metadata and search tools to support data search. Metadata standards emphasize the machine-readability of data and its documentation. There are opportunities to enhance dataset search by improving users' ability to learn about, and make sense of, information about data. Prior research has shown that context and expertise are two main barriers users face in effectively searching for, evaluating, and deciding whether to reuse data. In this paper, we propose a novel chatbot-based search system, DataChat, that leverages a graph database and a large language model to provide novel ways for users to interact with and search for research data. DataChat complements data archives' and institutional repositories' ongoing efforts to curate, preserve, and share research data for reuse by making it easier for users to explore and learn about available research data.
Pdf:
Lien pdf
Références
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Citations
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Mots-clés
0 mots-clés
Nom Nombre d'articles Actions
Pas encore de mot-clé
Auteurs
1 auteurs
Nom Nombre d'articles Actions
Lizhou Fan and Sara Lafia and Lingyao Li and Fangyuan Yang and Libby Hemphill 1