Hierarchical neural story generation
Informations
Type:
article
Auteurs:
Fan, Angela and Lewis, Mike and Dauphin, Yann
Pertinence:
Haute
Référence:
akoury2020storium
Doi:
Mots-clés:
Url:
https://arxiv.org/abs/1805.04833
Date de publication:
12/2017
Résumé:
Génération d'histoires sur base d'un prompt.
Abstract:
We explore story generation: creative systems that can build coherent and fluent passages of text about a topic. We collect a large dataset of 300K human-written stories paired with writing prompts from an online forum. Our dataset enables hierarchical story generation, where the model first generates a premise, and then transforms it into a passage of text. We gain further improvements with a novel form of model fusion that improves the relevance of the story to the prompt, and adding a new gated multi-scale self-attention mechanism to model long-range context. Experiments show large improvements over strong baselines on both automated and human evaluations. Human judges prefer stories generated by our approach to those from a strong non-hierarchical model by a factor of two to one.
Pdf:
Lien pdf
Références
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Citations
1 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Wordcraft: Story Writing With Large Language Models inproceedings Haute Yuan, Ann and Coenen, Andy and Reif, Emily and Ippolito, Daphne 03/2022 3 6
Mots-clés
0 mots-clés
Nom Nombre d'articles Actions
Pas encore de mot-clé
Auteurs
4 auteurs
Nom Nombre d'articles Actions
Fan 1
Yann 1
Mike and Dauphin 1
Angela and Lewis 1