Attention is all you need
Informations
- Type:
- article
- Auteurs:
- Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones, Llion and Gomez,...
- Pertinence:
-
Haute
- Référence:
- akoury2020storium
- Doi:
- Mots-clés:
- Url:
- https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
- Date de publication:
- 12/2016
- Résumé:
- Description du fonctionnement des modèles transformeurs.
- Abstract:
-
The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. - Pdf:
- Lien pdf
Références
0 articles
Titre | Type | Pertinence | Auteurs | Date Publication | Références | Citations | Actions |
---|---|---|---|---|---|---|---|
Pas encore d'article |
Citations
2 articles
Titre | Type | Pertinence | Auteurs | Date Publication | Références | Citations | Actions |
---|---|---|---|---|---|---|---|
Co-Writing with Opinionated Language Models Affects Users’ Views | inproceedings | Haute | Jakesch, Maurice and Bhat, Advait and Buschek, Daniel and Zalmanson, Lior and Naaman, Mor | 04/2023 | 4 | 0 | |
Wordcraft: Story Writing With Large Language Models | inproceedings | Haute | Yuan, Ann and Coenen, Andy and Reif, Emily and Ippolito, Daphne | 03/2022 | 3 | 6 |
Mots-clés
0 mots-clés
Nom | Nombre d'articles | Actions |
---|---|---|
Pas encore de mot-clé |