
Enabling Conversational Interaction with Mobile UI using
Large Language Models

Bryan Wang∗
University of Toronto
Toronto, ON, Canada

bryanw@dgp.toronto.edu

Gang Li
Google Research

Mountain View, CA, USA
leebird@google.com

Yang Li
Google Research

Mountain View, CA, USA
liyang@google.com

ABSTRACT
Conversational agents show the promise to allow users to interact
with mobile devices using language. However, to perform diverse
UI tasks with natural language, developers typically need to create
separate datasets and models for each specific task, which is ex-
pensive and effort-consuming. Recently, pre-trained large language
models (LLMs) have been shown capable of generalizing to various
downstream tasks when prompted with a handful of examples from
the target task. This paper investigates the feasibility of enabling
versatile conversational interactions with mobile UIs using a sin-
gle LLM. We designed prompting techniques to adapt an LLM to
mobile UIs. We experimented with four important modeling tasks
that address various scenarios in conversational interaction. Our
method achieved competitive performance on these challenging
tasks without requiring dedicated datasets and training, offering a
lightweight and generalizable approach to enable language-based
mobile interaction.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).

KEYWORDS
Large Language Models, Conversational Interaction, Mobile UI
ACM Reference Format:
Bryan Wang, Gang Li, and Yang Li. 2023. Enabling Conversational Inter-
action with Mobile UI using Large Language Models. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems (CHI ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3544548.3580895

1 INTRODUCTION
Interacting with computing devices using natural language is a
long-standing pursuit in human-computer interaction [6, 13, 22].
Language, as both the input and the output, allows users to ef-
ficiently communicate with a computing system and access its
functionalities when other I/O modalities are unavailable or cum-
bersome. The interaction paradigm is particularly useful for users
∗Work done during an internship at Google Research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3580895

with motor or visual impairments or situationally impaired when
occupied by real-world tasks [48, 54]. Intelligent assistants, e.g.,
Google Assistants and Siri, have significantly advanced language-
based interaction for performing simple daily tasks such as setting
a timer. Despite the progress, these assistants still face limitations
in supporting conversational interaction in mobile UIs, where many
user tasks are performed [31]. For example, they cannot answer a
user’s question about specific information displayed on the screen
[18]. Achieving such capabilities requires an agent to have a com-
putational understanding of graphical user interfaces (GUIs), which
is absent in existing assistants.

Prior research has investigated several important technical build-
ing blocks to enable conversational interaction with mobile UIs,
including summarizing a mobile screen for users to quickly under-
stand its purpose [50], mapping language instructions to UI actions
[37, 41, 44] and modeling GUIs so that they are more amenable for
language-based interaction [34, 39, 50, 55, 58]. However, each of
them only addresses a limited aspect of conversational interaction
and requires considerable effort in curating large-scale datasets
and training dedicated models. [37, 38, 40, 50]. Furthermore, there
is a broad spectrum of conversational interactions that can occur
on mobile UIs, as Todi et al. revealed [49]. Therefore, it is impera-
tive to develop a lightweight and generalizable approach to realize
conversational interaction.

Recently, pre-trained large language models (LLMs) such as GPT-
3 [7] and PaLM [9] have demonstrated abilities to adapt themselves
to various downstream tasks when being prompted with a handful
of examples of the target task. Such generalizability is promising
to support diverse conversational interactions without requiring
task-specific models and datasets. However, the feasibility of doing
so is unclear. Little work has been conducted to understand how
LLMs, trained with natural languages, can be adapted to GUIs for in-
teraction tasks. Therefore, we investigate in this paper the viability
and the how-to of utilizing LLMs to enable diverse language-based
interactions with mobile UIs.

We categorized four mobile UI conversational interaction scenar-
ios, which guided our experimental task selection. We developed
a set of prompting techniques to prompt LLMs with mobile UIs.
Since LLMs only take text tokens as input, we contribute an al-
gorithm to generate the text representation of mobile UIs. Our
algorithm uses depth-first search traversal to convert the Android
UI’s view hierarchy, i.e., the structural data containing detailed
properties of UI elements, into HTML syntax. We conducted com-
prehensive experiments with four pivotal modeling tasks, including
Screen Question-Generation, Screen Summarization, Screen Question-
Answering, and Mapping Instruction to UI Action. The experimental
results show that our approach achieves competitive performance

ar
X

iv
:2

20
9.

08
65

5v
2

 [
cs

.H
C

]
 1

7
Fe

b
20

23

https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/3544548.3580895

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

using only two data examples per task. Notably, our work is the first
to investigate methods to enable the Screen Question-Generation and
Screen Question-Answering tasks in literature, setting benchmark
performances. Furthermore, the human evaluation of the Screen
Summarization task demonstrates that our method generates more
accurate screen summaries compared to Screen2Words [50], the
benchmark model trained with tens of thousands of examples. In
summary, the evaluation results from a suite of modeling tasks val-
idate the feasibility and effectiveness of our approach in enabling
conversational interaction with mobile UIs.

More broadly, our study demonstrates LLMs’ potential to fun-
damentally transform the future workflow of conversational inter-
action design. Using our prompting method, interaction designers
and developers can quickly prototype and test novel language in-
teractions with users, saving time and resources before investing in
dedicated datasets and models. Our experiments are based on open-
source Android UI datasets, including RICO [12], Screen2Words
[50], and PixelHelp [37]. We also open-source the code 1 of our al-
gorithm that converts the Android view hierarchy to HTML syntax
to allow future work to replicate and build upon our work. Example
prompts created using our algorithm can be found in the appendix.
In summary, our paper makes the following contributions:

• Our work is the first investigation for using LLMs to enable
conversational interaction on mobile UIs, which advances
the understanding of using LLMs for interaction tasks.

• We designed a novel method for feeding GUIs to LLMs—that
is pre-trained for natural language—and a set of techniques
to prompt LLMs to perform a range of conversational tasks
on mobile UI screens. These techniques produce competi-
tive performance; we open-source the code so others can
immediately use them in their work.

• We experimented with four pivotal modeling tasks, demon-
strating the feasibility of our approach in adapting LLMs for
conversational GUI interaction and potentially lowering the
barriers to developing conversational agents for GUIs.

2 RELATEDWORK
2.1 Bridging GUIs with Natural Language
There has been increasing interest in using machine learning to
bridge graphical user interfaces and natural language for use cases
such as accessibility and multimodal interaction. For example, Wid-
get Captioning [38] and Screen Recognition [58] predict semanti-
cally meaningful alt-text labels for GUI components. Screen2Words
[50] took a step further to predict text summaries that concisely
describe the entire screen using multimodal learning. Leiva et al.
proposed a vision-only approach to generate templated language
descriptions of UI screenshots [28]. Li et al. [37] uses a transformer-
based model to map natural language instructions to mobile UI
action sequences. These prior works typically train a model dedi-
cated to the task based on a sizeable dataset collected. In contrast,
our work leverages the few-shot learning ability of LLMs to enable
language-based UI tasks by providing a small number of examples.
To achieve this, we propose a novel method to represent the UI so
that an LLM pre-trained for natural language can efficiently process

1https://github.com/google-research/google-research/tree/master/llm4mobile

it. Another relevant body of work is to develop a conversational or
multimodal agent that can help the user accomplish mobile tasks
[31–33, 35]. For example, SUGILITE [31] enables users to create
task automation on smartphones by user demonstration and per-
form the tasks through a conversational interface. KITE [33] helps
developers create task-oriented bots templates from existing apps.
Our work shows that LLMs can enable versatile language-based
interactions when prompted with exemplars for different tasks,
lowering the threshold for developing versatile multimodal agents.

2.2 Prompting Pre-trained Large Language
Models

Finetuning pre-trained task-invariant models such as BERT has
been a common practice to adapt large models for specific tasks.
However, GPT-3 [7] introduced a new norm for leveraging pre-
trained language models for downstream tasks through in-context
few-show learning, i.e., prompting. By prompting a pre-trained
model with only a few examples, it can generalize to various tasks
without updating the parameters in the underlying model. Recently
studies have shown that prompting is one of the emergent abilities
that appear only when the model size is large enough [52]. While
prompting LLMs may not always outperform benchmark models, it
provides a lightweight method to achieve competitive performance
on various tasks [7, 9]. When the prompt consists of 𝑁 pairs of
input and output exemplars from the target tasks, it is referred to as
𝑁 -shot learning, and providing more shots typically improves per-
formance [7, 9]. Additionally, various prompting paradigms have
been proposed to elicit logical reasoning from the language model
[24, 51, 53, 59], which is useful for tasks like solving math problems.
For example, Chain-of-Thought prompting [53] proposes to use the
models to generate intermediate results (i.e., a chain of thoughts)
before generating the final output. The core idea resembles the
divide-and-conquer method in algorithms, which breaks more com-
plicated problems into subproblems that can be solved more easily.
Prompting LLMs remains an ongoing research topic in the com-
munity. Our work builds upon prior work to contribute a set of
prompting techniques designed to adapt LLMs to mobile UIs.

2.3 Interactive Applications of Large Language
Models

LLMs have been applied to enable a broad range of language-related
interactive applications in the HCI community [2, 10, 11, 20, 21, 23,
25–27, 42, 56]. For example, Chang et al. [10] proposed TaleBrush, a
generative story ideation tool that uses line sketching interactions
with a GPT-based language model for control and sensemaking of
a protagonist’s fortune in co-created stories. Stylette [23] allows
users to modify web designs with language commands and uses
LLMs to infer the corresponding CSS properties. Lee et al. [25]
present CoAuthor, a dataset designed to reveal GPT-3’s capabilities
in assisting creative and argumentative writing. Since LLMs can
encode a wealth of semantic knowledge, they have also been used
to support physical applications. For example, SayCan [2] extracts
and leverages the knowledge priors within LLMs to execute real-
world, abstract, long-horizon robot commands. Ourwork represents
the first contribution of applying LLMs to enable conversational
interactions on mobile UIs.

https://github.com/google-research/google-research/tree/master/llm4mobile

Enabling Conversational Interaction with Mobile UI using Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 1: The categorization of different conversation scenarios when user and agent interact to complete tasks on mobile UIs.
The categorization has two axes: initiative and purpose. An agent can take the initiative to solicit new information from the
user or to provide information to the user, and vice versa. We included an example task for each category where the agent’s
action represents the target output from LLMs.

3 CONVERSATION FOR MOBILE UI TASKS
Conversational interaction with mobile devices is typically embod-
ied as human users exchanging information with a conversational
agent. We developed a conceptual framework categorizing four
conversation scenarios between users and agents when perform-
ing mobile tasks. Our categorization has two dimensions: Initiative
and Purpose. As shown in Figure 1, a conversation can be mixed-
initiative [17], either initiated by the agent or the user. The purpose
of initiated conversation can be either soliciting or providing in-
formation. The categorization lays the foundation for determining
important modeling tasks to investigate. We focus on studying how
LLMs can enable the interaction capabilities of a conversational
agent based on a mobile UI, e.g., providing language responses or
performing UI actions on behalf of the user. For simplicity, we limit
our study to unit conversations which include, at most, a single turn
from the user and agent. More complex, multi-turn conversations
are beyond the scope of this paper and will be explored in future
research, which we discuss in section 6.3. We now introduce each
conversation category and the associated example modeling tasks,
including 1) Screen Question-Generation, 2) Screen Summarization, 3)
Screen Question-Answering, and 4) Mapping Instruction to UI Action.

3.1 Agent-initiated Conversation
When an agent initiates a conversation, it can be either soliciting
or providing information essential for the user to perform tasks on
a mobile UI.

3.1.1 Agent solicits information from user. Mobile UIs often request
users to input information relevant to their goals. For example,

destination city or travel dates in the scenario of booking a hotel.
On mobile UIs, the information request is typically made through
input text fields. A conversational agent should be able to similarly
solicit essential information from users using natural language. For
example, asking users questions like "Which hotel do you want to
search for." or "What is the check-in date of your stay?" We refer to
this type of task as Screen Question-Generation since the questions
should be generated based on the UI screen contexts.

3.1.2 Agent provides information to user. A key function of GUIs
is to convey information to users through visual means. Similarly,
conversational agents should be able to articulate the information
presented in GUIs using language. Given that UIs contain a vast
amount of information and user needs vary [49], there are nu-
merous ways to deliver screen information. An example is Screen
Summarization [50], which provides a short description of the pur-
pose of the current screen, e.g., "A list of hotel rooms available at
W San Francisco.", or "A step-by-step recipes of butter chicken". The
descriptions can help users quickly understand the UI when visual
information is unavailable.

3.2 User-initiated Conversation
Users can also initiate conversations to request information or
proactively provide information for the agent to process.

3.2.1 User solicits information from the agent. Users should be able
to solicit screen information from the agent through conversation.
When the information request is done through questions such as
"What’s the rate of the hotel room with a king-size bed?", the agent
should respond with appropriate answers such as "$330 per night",

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

based on the information presented on the screen. We call this type
of conversational interaction Screen Question-Answering, similar
to visual [5] or text question-answering [45] but instead based on
a mobile UI. Screen Question-Answering is beneficial in situations
where there is a large amount of text on a screen, such as search
results, making it difficult to locate specific information. It is also
useful for individuals with disabilities who rely on screen readers to
access screen text. Instead of waiting for the screen reader to scan
through all the content on the screen until the relevant information
is found, they can simply ask for the needed information.

3.2.2 User provides information to the agent. Users can initiate
conversations with the agent by providing new information. After
receiving the messages, the agent should respond accordingly based
on the current UI context using language and/or mobile actions. A
representative task of this type of conversation is Mapping Instruc-
tion to UI Action. For example, when a user who is presented with
a hotel booking screen says, "Click on the Reserve button to book the
Fabulous King room", the agent should understand the user’s intent
and the UI contexts in order to click the corresponding button. This
type of interaction allows users to control the devices when touch
inputs are unavailable [54].

4 PROMPTING LARGE-LANGUAGE MODELS
FOR MOBILE UI TASKS

We introduce a class of prompting techniques designed to adapt
LLMs to mobile UIs to enable conversational interaction. LLMs
support in-context few-shot learning via prompting—instead of
finetuning or re-training models for each new task, one can prompt
an LLM with a few input and output data exemplars from the target
task [7, 9, 53, 59]. For many natural language processing tasks
such as question-answering or translation, few-shot prompting
performs competitively with benchmark approaches [7]. However,
the methodology for prompting LLMs with mobile UIs has yet to
be established and presents several challenges. Firstly, language
models can only take text input, while mobile UIs are multimodal,
containing text, image, and structural information in their view
hierarchy data and screenshots. Moreover, directly inputting the
view hierarchy data of a mobile screen into LLMs is not feasible
as it contains excessive information, such as detailed properties of
each UI element, which can easily exceed the input length limits of
LLMs. Furthermore, the mobile UIs encapsulate the logic of target
user tasks [36]. Therefore, logical reasoning based on UI contexts
is essential for the model to support conversations toward task
completion. These unique aspects of mobile UIs pose two open
problems for designing prompts:

(1) How to represent mobile UIs in texts to leverage the few-shot
prompting capability of LLMs?

(2) How to elicit reasoning based on themobile UIswhen needed?

We respond to these questions by describing our proposed prompt-
ing techniques and their design rationales. Prompting LLMs remains
an ongoing research problem. As the first to investigate prompting
with mobile UI, we provide a strong baseline approach and encour-
age future work to build upon our design and further study the
open problems.

4.1 Screen Representation
4.1.1 Representing View Hierarchy as HTML. There are various
ways to represent a mobile UI in text, e.g., concatenating all the text
elements on the UI into a token sequence or using natural language
sentences to describe UI elements, such as "a menu button in the top
left corner." To design our screen representation, we leverage the
insight that if a prompt falls within the training data distribution of
a language model, it is more likely for few-shot learning to perform.
This is because LLMs are trained to predict the subsequent tokens
that maximize the probability based on the training data. LLMs’
training data is typically scraped from the web, including both
natural language and code. For example, 5% of PaLM’s [9] training
data was scraped from GitHub, including 24 common programming
languages such as Java, HTML, and Python [9]. Therefore, we
represent a mobile UI in texts by converting its view hierarchy data
into HTML syntax. HTML is particularly suitable for representing
mobile UIs as it is already a markup language representing web
UIs. The conversion is conducted by traversing the view hierarchy
tree using a depth-first search. We detail our conversion algorithm
in the following sections. Note that since the view hierarchy is
not designed to be represented in HTML syntax, a perfect one-to-
one conversion does not exist. In contrast, our goal is to make the
converted view hierarchy similar to the HTML syntax to generate
a data representation closer to the training data distribution.

4.1.2 View Hierarchy Properties. Converting a mobile UI’s view
hierarchy into HTML syntax can preserve the detailed properties
of UI elements and their structural relationship. The view hierar-
chy is a structural tree representation of the UI where each node,
corresponding to a UI element, contains various properties such as
the class, visibility-to-user, and the element’s bounds. However, us-
ing all element properties will result in lengthy HTML text, which
may exceed the input length limit of the language model, e.g., 1920
tokens for PaLM and 2048 tokens for GPT-3. Therefore, we use a
subset of properties related to the text description of an element:

• class: Android object type such as TextView or Button.
• text: element text that is visible to the user.
• resource_id: text identifiers that describe the referenced
resource.

• content_desc: content description that describes the ele-
ment for accessibility purposes, i.e., the alt-text.

4.1.3 Class Mapping. We developed heuristics to map the An-
droid classes to HTML tags with similar functionalities. We map
TextView to the <p> tag as they are both used for presenting
texts; all button-related classes such as Button or ImageButton
are mapped to <button>. We map all image-related classes such as
IMAGEVIEW to , including icons and images. Lastly, we con-
vert the text input class EDITTEXT to <input> tag. We focus on the
most common element classes for simplicity, and the rest of the
Android classes, including containers such as LinearLayout are
mapped to the <div> tag.

4.1.4 Text, Resource_Id, and Content Description. We insert the
text properties of Android elements in between the opening and
closing HTML tags, following the standard syntax of texts in HTML.
The resource_id property contains three entities: package_name,
resource_type, and resource_name. Among them, resource_name

Enabling Conversational Interaction with Mobile UI using Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 2: Left: An example illustrating the proposed prompt structure. A prompt starts with the preamble, which describes the
task. Following the preamble, there will be zero or more task exemplars from the target tasks. Each exemplar consists of an
input screen HTML, a chain of thoughts (if applicable), and a task-specific output. Additional exemplars are appended to the
end of the previous ones. Right: An illustration of prompting large language models in our use cases. The prompt contains N
exemplars from the target tasks. We append the screen HTML of the test screen to the end of the prompt. We then feed the
prompt + test screen HTML as input into the LLM. The LLM then generates word tokens in an auto-regressive manner, which
helps them capture the exemplars’ pattern to produce a chain of thoughts (if applicable) and task-specific output.

usually contains additional descriptions of an element’s functional-
ity or purpose written by the developers. For example, in the Gmail
app, an elementwith resource_name of "unread_count_textView"
shows how many emails are unread, whereas a "date" means the
element shows the date of receiving a mail. Such information helps
the model to better understand the screen context. We insert the
resource_name tokens that describe each element’s purpose as
additional identifiers in the "class" attributes, which originally
contain identifiers linked to a style sheet or used by JavaScript to
access the element. Word tokens in resource_name are typically
concatenated with underscores, which we replace as spaces when
inserting. Lastly, we insert the content_desc as the "alt" attribute
in the HTML tags when the property is present.

4.1.5 Numeric Indexes for Referencing. To help model referencing
specific UI elements, we insert numeric indexes to each element as
the "id" attribute. The indexes are generated with the depth-first
search order in the view hierarchy tree. For tasks such as predicting
which button to click based on language instructions, the model can
refer to elements using numeric indexes, which is more efficient
and space-saving than spelling out the complete HTML tag.

4.2 Chain-of-Thought Prompting
Mobile UIs encapsulate the logic of user tasks [36]; therefore, it is
vital for models to perform reasoning when used for conversational
interaction. LLMs have demonstrated abilities to reason [2, 7, 9] as
they captured real-world knowledge during training with a large

number of texts. Recent work further shows that LLM’s reasoning
ability can be improved by generating and chaining intermediate re-
sults to obtain the final answers, namely, Chain-of-Thought prompt-
ing [53]. The idea is straightforward, i.e., simply appending a chain
of thoughts describing intermediate results before the answers in
the prompt. The model would then follow the patterns to generate
a chain of thoughts during inference. Chain-of-Thought prompting
has been shown to be helpful for reasoning tasks. The results are
also more interpretable as the model would articulate its thought
process before coming up with the answer. However, prior work has
not investigated whether it can facilitate reasoning in generating
conversations based on mobile UIs. Therefore, we incorporate the
method in our experiments. Chain-of-Thought prompting has been
shown effective for tasks that require the model to reason across
multiple steps. In our early investigations, we found that this tech-
nique does not improve performance for tasks where the output
can be directly obtained from the input screen HTML. Therefore, in
our experiments, we only used the technique for Screen Question-
Generation whose task setup requires multi-step reasoning.

4.3 Prompt Structure
We follow a similar prompt structure proposed in [7]. Each prompt
starts with a preamble which explains the prompt’s purpose. The
preamble is followed by multiple exemplars consisting of the input,
a chain of thought (if applicable), and the output for each task.
Each exemplar’s input is a mobile screen in the HTML syntax. To
better leverage few-shot learning while complying with LLM’s

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

input length limits, we only show the leaf nodes visible to the users,
as non-leaf nodes are usually containers that do not contain textual
information. Following the input, a chain of thoughts is provided
to elicit logical reasoning from LLMs, if applicable to the task. The
output is the desired outcome for the target tasks, e.g., a screen
summary or an answer to the question asked by the user. Figure 2-
left shows an example of a 1-shot prompt. Few-shot prompting can
be achieved with more than one exemplar included in the prompt.
During prediction, we feed the model with the prompt with a new
input screen appended at the end. Therefore, for 𝑁 -shot learning,
the prompt will consist of a preamble, 𝑁 exemplars, and the test
screen for prediction, as shown in Figure 2-right.

5 FEASIBILITY EXPERIMENTS
As shown in Figure 3, we demonstrate the feasibility of using LLMs
to enable conversations on GUIs through experiments with four
tasks we introduced in section 3: 1) Screen Question-Generation, 2)
Screen Summarization, 3) Screen Question-Answering, and 4) Map-
ping Instruction to UI Action. Following the common practices of
few-shot prompting [7, 53], we select a handful of exemplar data to
construct prompts for each task. We then evaluate the effectiveness
using task-specific metrics detailed in each experiment. All the
studies were conducted with the PaLM model [9], which performs
similarly to other LLMs such as GPT-3 [53]. The PaLM model is
trained with a maximum input length of 1920 tokens. Therefore,
we limit the number of exemplars in a prompt to be two at most,
excluding the test screen, to avoid exceeding the length limit. The
experiments aim to understand what can be achieved by simply
prompting LLMs with a few exemplars from the target tasks and
compared to the baseline or benchmark if available.

5.1 Screen Question-Generation
5.1.1 Task Formulation. Given a mobile UI screen, the goal of
screen question-generation is to synthesize coherent, grammatically-
correct natural language questions relevant to the UI elements re-
quiring user input. The task occurs when the agent requests user
input to proceed on the UI.

5.1.2 Prompt Construction. Figure 2 shows an example prompt
we used to generate questions. We use a preamble of "Given a
screen, the agent needs to identify the elements requiring user input
and generates corresponding questions.". We used chain-of-thought
techniques to generate three intermediate results 1) input fields
count, 2) screen summary, and 3) input enumeration. The input
field counts were fed with a ground truth count extracted from the
screen HTML. We found this step essential to prevent the model
from omitting some input elements and only generating a subset of
questions. Next, we asked the model to summarize the screen’s pur-
pose, which produces the screen context that helps provide details
in the generated questions. Subsequently, the model enumerates
which elements are asking for what information. After the chain of
thoughts, the model generates the questions, enclosed by <SOQ> and
<EOQ> tokens, representing start-of-question and end-of-question,
respectively. The tokens are used as delimiters for conveniently
parsing the questions from the output texts generated by the model.
We use similar ways to insert special tokens for parsing model

Figure 3: An illustration of the four UI modeling tasks
we experimented on a single mobile UI. The tasks include
Screen Question-Generation, Screen Summarization, Screen
Question-Answering, and Mapping Instruction to UI Action.
Each task is associated with a conversation category de-
scribed in Section 3. Bounding boxes on the mobile UI high-
light elements relevant to the example conversational inter-
actions from each task.

output in the rest of the experiments. An example prompt can be
found in appendix A.1.

5.1.3 Experimental Setup. We aim to understand the quality of
LLMs for natural language generation based on UI elements. Since
there is currently no existing dataset for screen question generation,
we followed the common practice of evaluating language generation
quality with human ratings. We randomly sampled 400 test screens
from the RICO dataset [12]. Each of these screens contains at least
one EditText element, representing the text input field for users
to enter information on the UI. We randomly selected another
two screens from the RICO dataset as exemplars to include in the
prompt. An EditText element represents an input field for the user
to enter information, and we generate questions for every input
field. We generate questions from the test screens using a prompt
constructed with two exemplars. Some screens contain multiple
input fields, and sometimes several of them are relevant and can be
asked collectively. For example, three fields asking for the birth year,
month, and date can be combined into a single question as "when is
your birthday?". Combining questions can lead to a more efficient
conversation between an agent and a user. Therefore, we include
an exemplar that combines relevant questions in the prompt to see
if the model will also learn to combine relevant questions.

We compare LLM’s results with a rule-based approach that uses
words in resource_id, referred to as res_tokens, to fill in the tem-
plate of "What is {res_tokens}?". We use res_token instead of text
because most text input fields are blank by default, and res_token
contains the most meaningful description of an input field. We re-
cruited 17 raters who work as professional data labelers at Google
to provide ratings. To ensure the quality of the labels, a group of

Enabling Conversational Interaction with Mobile UI using Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 4: Example screen questions generated by the LLM. Left: The LLM can utilize screen contexts to generate grammatically-
correct questions relevant to each input field on themobileUI, while the template approach falls short. Right:We observed that
the LLM could use its prior knowledge to combine multiple related input fields to ask a single question. The example shows
the LLM combining the minimum and maximum prices fields into a single question asking about the price range. Elements
relevant to each question are highlighted in corresponding colors and numbered indexes.

Table 1: Grammar correctness, UI relevance, and question
coverage results from the screen question-generation exper-
iment.

Method Grammar Relevance Coverage F1

Template 3.60 (𝜎=0.69) 84.1% 100%
LLM 4.98 (𝜎=0.07) 92.8% 95.9%

quality audits sampled and reviewed 5% of the total number of
questions answered by every rater. We provided a UI screenshot of
a mobile UI and a generated question for each labeling task. The
EditText element associated with the question is highlighted with
a bounding box. We solicited human ratings on whether the ques-
tions were grammatically correct and relevant to the input fields for
which they were generated. In addition to the human-labeled lan-
guage quality, we automatically examined howwell LLMs can cover
all the elements that need to generate questions. The evaluation
metrics include the following:

• Grammar Correctness: How correct is the grammar of
a generated question? Are the sentences intelligible and
plausible? This metric tests the language generation quality
in general and is rated on a 5-point Likert scale with 1 as
completely incorrect and 5 as completely correct.

• UI Relevance: Whether a generated question is relevant to
the highlighted UI element. This metric tests whether the
connection between a UI element and a question is correctly
established by the model, which is rated on a binary scale as
either relevant or not relevant.

• Question Coverage: How well can the model identify the
elements on the screen that need question generation? This
metric is automatically computed by comparing the indices
of ground truth input elements with those identified by the
model within the chain of thoughts.

5.1.4 Results. We evaluated 931 questions for both the LLMs and
the template-based approach. Three different human raters exam-
ined each question to obtain aggregated scores. Table 1 shows the
results of our evaluation. Our approach achieves an almost perfect
average score of 4.98 on grammar correctness, while the rule-based
approach receives a 3.6 average rating. A Mann–Whitney U test
shows that the difference between the two methods is statistically
significant (p < 0.0001). LLMs also generate 8.7% more relevant
questions compared to the baseline. In terms of questions coverage,
our approach achieves an F1 score of 95.9% (precision = 95.4%, re-
call = 96.3%). Since the rule-based method iterates through every
input field to generate questions, its question coverage is naturally
100%. Altogether, the results show that our approach can precisely
identify input elements and generate relevant questions that are in-
telligible. We further analyzed the model behaviors, and our results
revealed interesting emergent abilities of LLMs. When generating
a question for a field, the model considers both the input field ele-
ment and the screen context (information from other screen objects).
For example, Figure 4 shows how the model leveraged screen con-
texts to generate four questions for the input fields on a credit card
register screen. While the baseline outputs use the ref_tokens to
convey somewhat relevant information, they are less intelligible
than the LLM output and do not articulate the specific information
requested by the fields. In contrast, all four questions generated by
LLM are grammatically correct and ask for relevant information.
For Question 3 in Figure 4, the LLM additionally uses the texts
above the input field to ask for the "last 4 digits of SSN". The model
also blends the screen contexts into the generated questions. For
instance, Question 2 asks for "credit card expiration date," while the
texts above did not mention the word "credit." We also observed that
the model exhibits the behavior of combining relevant fields into a
single question on three test screens. For example, Figure 4 shows
the model can combine two input elements asking for minimum
and maximum values for price into a single question "What is the
price range?". In practice, combining questions can lead to more
efficient communication between users and agents.

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

Table 2: Screen summarization performance on automatic metrics.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr ROUGE-L METEOR

0-shot LLM 7.8 6.4 5.9 5.7 1.5 3.4 4.5
1-shot LLM 42.3 21.1 14.8 12.1 40.9 28.9 15.3
2-shot LLM 45.0 25.1 17.6 14.1 39.9 33.0 17.7
Screen2Words [50] 65.5 45.8 32.4 25.1 61.3 48.6 29.5

5.2 Screen Summarization
5.2.1 Task Formulation. Screen summarization was proposed in
[50] as the automatic generation of descriptive language overviews
that cover essential functionalities of mobile screens. The task helps
users quickly understand the purpose of a mobile UI, which is
particularly useful when the UI is not visually accessible.

5.2.2 Prompt Construction. We use a preamble of "Given a screen,
summarize its purpose." We did not use chain-of-thought prompting
as no intermediate result is needed to be generated for the task. We
used 𝑁 pairs of screen HTML and corresponding summary follow-
ing the preamble, where 𝑁 = 0, 1, 2 represents 𝑁 -shot learning. The
output summaries are enclosed by special tags <SOS> and <EOS>,
meaning the start and end of a summary, respectively. An example
prompt can be found in appendix A.2.

5.2.3 Experiment Setup. We use the Screen2Words dataset [50]
to test LLM’s ability to summarize screens. The dataset contains
human-labeled summaries for more than 24k mobile UI screens,
eachwith five summary labels. To gauge the quality of our approach,
we test the performance of using LLMs to summarize screens with
Screen2Words’ test set, consisting of 4310 screens from 1254 unique
apps, which was used by the benchmark.We randomly sampled two
screens from the dataset and one of their corresponding summaries
as the exemplars for prompt construction. We use the same auto-
matic metrics reported in the original paper, including BLEU, CIDEr,
ROUGE-L, and METEOR. As prior work [14, 50] has found that
automatic scores may not correlate well with human perception of
summary quality, we additionally conducted a human evaluation
to solicit subjective feedback on the summaries generated by both
LLM and the benchmark model Screen2Words [50]. We recruited
37 annotators using the same process specified in section 5.1.3. We
presented annotators with a mobile UI screen and two screen sum-
maries during the labeling process. To avoid bias, we randomly
assigned the summaries generated by LLM and Screen2Words to
be either Summary 1 or Summary 2, without revealing which sum-
mary was generated by which model. We instructed annotators to
choose the summary that best accurately summarizes the mobile
screen. The annotators were given three options: (a) Summary 1, (b)
Summary 2, and (c) Equal or Very Similar. They were instructed to
choose the third option only when it was difficult to judge the differ-
ences between the quality of the two summaries. The rating study
was conducted on the full test dataset, with each screen receiving
three ratings from different annotators.

5.2.4 Results. Table 2 shows the results of screen summarization
on automatic metrics. The model could not generate meaningful
summaries in the zero-shot setting (not providing any exemplar).

Figure 5: Annotator vote distribution across all test screens.
LLM summaries are more accurate than those of the bench-
mark model for 64.1% of screens across the test set. This
choice is unanimous between three labelers for more than
half of the screens (52.8 %).

This result is expected as the LLM’s training data may not have
covered the task of screen summarization. When provided with the
model one exemplar, the performance significantly boosted across
all metrics. More examples in the prompt provide marginally higher
scores. The average length of summaries generated by our two-shot
LLM model was 7.15 words (STD=2.68). In comparison, the average
length of summaries generated by the benchmark model was 6.64
(STD=1.98). Additionally, the LLM used a significantly larger num-
ber of unique words, at 3062, compared to the 645 unique words
used by the benchmarkmodel. The results indicate that LLM is capa-
ble of generating longer summaries with a wider range of language.
When evaluating these models against automatic metrics, LLM
generally scored less than the benchmark model. This is expected
because the benchmark model was trained with the Screen2Words
dataset, and the automatic metrics are based on token matching.
A model trained on the dataset could achieve high scores by pri-
oritizing the high-frequency words in the dataset. However, many
high-frequency words and phrases, such as "display of," "screen’,
and "app", in the Screen2Words dataset do not meaningfully con-
tribute to the summarization accuracy. As a result, a specialized
model that learned to prioritize these frequent words may score
well by synthesizing generic summaries, indicating the limitations
of existing evaluation metrics.

In contrast, our human evaluation revealed that LLM generates
summaries with higher perceived quality than those generated by
the benchmark model, Screen2Words. Among all the human an-
notations, 63.5% of them rated LLM summaries as more accurate,
while 28.6% voted for benchmark model summaries. Moreover, 7.9%

Enabling Conversational Interaction with Mobile UI using Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 6: Example summaries generated by prompting the LLM with two exemplars (2-shot learning). The LLM is likelier
to use specific texts on the screen to compose summaries (top-left and bottom-right). Moreover, the LLM is more likely to
generate more extended summaries that leverage multiple vital elements on the screen (top-right). We also observed that
the LLM would use its prior knowledge to help summarize the screens. For example, the bottom-right shows the LLM had
inferred the screen is for the London Tube system from the station names displayed on the screen. UI elements relevant to
the highlighted phrases in the summaries are called out by bounding boxes with corresponding colors.

of annotations indicated that LLM and Screen2Words generate sum-
maries with equal or very similar accuracy. We further examine
the annotator agreement across all individual screens. As shown in
Figure 5, LLM summaries are deemed as more accurate for 64.1%
of screens according to the majority vote (> 2 votes). Remarkably,
LLM summaries were rated as more accurate unanimously by three
annotators for 52.8 % of screens. However, our study also showed
the LLMs summaries are not always better than the benchmark
model, whose summaries received unanimous votes for 20.5% of
screens. The results suggest that improving our approach may in-
volve incorporating visual information [3] (as Screen2Words does),
as current language models do not have access to this type of infor-
mation. Therefore, our approach may not perform well for screens
without texts and have a strong focus on visuals.

Figure 6 shows example screens with summaries annotated by
human labelers and the output from both Screen2Words and the
LLM model. We found that the LLM is more likely to use spe-
cific texts on the screen to compose summaries, such as San Fran-
cisco (top-left) and Tiramisu Cake Pop (bottom-left), while the
Screen2Words dataset and the benchmark model output tend to
be more generic. Moreover, the LLM is more likely to generate
more extended summaries that leverage multiple vital elements
on the screen. For example, the top-right screen shows that the
LLM composes a longer summary by leveraging the app name, the
send file button, and the recipient fax button: "FaxFile app screen
where a user can select a file to send via fax and pick recipients."
We also observed that the LLM’s prior knowledge is beneficial for
screen summarization. For example, the bottom-right photo shows

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

Table 3: The LLM’s performance on the screen QA task.

Model Exact Matches Contains GT Sub-String of GT Micro-F1

0-shot LLM 30.7% 6.5% 5.6% 31.2%
1-shot LLM 65.8% 10% 7.8% 62.9%
2-shot LLM 66.7% 12.6% 5.2% 64.8%
DistilBERT [47] 36.0% 8.5% 9.9% 37.2%

a station search results page for London’s tube system. The LLM
predicts "Search results for a subway stop in the London tube system."
However, the input HTML does not contain the words "London"
nor "tube." Therefore, the model has utilized its prior knowledge
about the station names, learned from large language datasets, to
infer that they belong to the London Tube. This type of summary
may not have been generated if the model is trained only on the
Screen2Words dataset and shows the benefit of leveraging LLM’s
prior knowledge for summarizing UIs.

5.3 Screen Question-Answering (QA)
5.3.1 Task Formulation. Given a mobile UI and an open-ended
question asking for information regarding the UI, the model should
provide the correct answer. We focus on factual questions, which
require answers based on facts presented on the screen.

5.3.2 Prompt Construction. We use a preamble of "Given a screen
and a question, provide the answer based on the screen information.".
We did not use chain-of-thought prompting as no intermediate
result is needed to be generated for the task. In our experiments, 𝑁
sets of screenHTML and question-answer pairs follow the preamble,
where 𝑁 = 0, 1, 2 represents 𝑁 -shot learning. The output answers
are enclosed by special tags <SOA> and <EOA>, meaning the start
and end of an answer, respectively. The prompt we used in the
study can be found in appendix A.3.

5.3.3 Experiment Setup. We use a dataset of 300 human-labeled
question-answer pairs from 121 unique screens in the RICO dataset
[12]. It is a preliminary dataset obtained from the authors of an on-
going large-scale data collection for screen question-answering [18].
The data labeling process involves two stages: question annotation
and answer annotation. For question annotation, the annotators
were asked to frame questions given a screenshot as the context.
The annotators were expected to compose questions that only in-
quire about information that requires no logical reasoning and
can be directly read off from the screen. After that, another set of
annotators answers the previously annotated questions given the
associated screenshots. We randomly held out three screens for
prompt construction. The three screens were associated with 12
QA pairs, and we randomly sampled one pair from each screen as
exemplars to include in the prompt. In the remaining 288 question-
answer pairs, 57 ground truth answers are not present in the view
hierarchy data. This is expected because the labeling is based on
screenshots instead of view hierarchies, and many screens in the
RICO dataset contain inaccurate view hierarchy data [29]. In this
work, we focus on the answers that are present in the view hier-
archy data, and incorporating screenshot information in the LLM
will be a critical direction to investigate in the future.

Since the answers are generated instead of retrieved from screen
HTML, some correct answers may not completely match the labels.
For example, "2.7.3" versus "version 2.7.3". Therefore, we report per-
formances on four metrics: 1) Exact Matches: the predicted answer
is identical to the ground truth. 2) Contains GT : the answer is longer
than the ground truth and fully contains it. 3) Sub-String of GT : the
answer is a sub-string of the ground truth. 4)Micro-F1: the micro F1
scores, calculated based on the number of shared words between the
predicted answer and the ground truth across the entire dataset. We
consider ExactMatch answers correct, and those fall withinContains
GT and Sub-String of GT relevant. The three metrics are exclusive to
each other, and examples of each can be found in Figure 7-right. We
compare the LLM with an off-the-shelf text QA model DistilBERT
[47]. We use the distilbert-base-cased-distilled-squad im-
plementation on huggingface.co, which achieved 79.6% Exact
Match and 87.0% F1 score on the SQuAD dataset [45]. Unlike exist-
ing QA models that extract answers from the input text, the LLM
may generate answers in aliases equivalent to the ground truth, for
example, 9/15 and September 15th. However, our metrics, which
rely on string matching, may not detect these aliases and could
result in under-reported scores for our approach.

5.3.4 Results. Table 3 shows the QA results of different settings.
Unlike screen summarization, we found that the LLM can already
perform screen QA with the zero-shot setting. 30.7% of the gener-
ated answers match exactly with the ground truth, 6.5% answers
contain the ground truth, and 5.6% answers are sub-strings of the
ground truth. The zero-shot performance might be because the
training data of LLMs already contain many QA-related data from
the internet. Therefore, the model had already learned to perform
question-answering. The off-the-shelf DistillBert model achieves
36% Exact Match, 8.5% Contains GT scores, and 9.9% Contains GT
scores, slightly better than the zero-shot performance of LLMs.
DistillBert model performs much poorly on our tasks compared to
standard question-answering benchmarks, which might be because
it was not trainedwithHTML data. Similar to screen summarization,
by providing a single exemplar, the performance boosted signifi-
cantly, achieving 65.8% Exact Match, 10% Contains GT, and 7.8%
Sub-String of GT–summing up to 83.6% answers relevant to the
ground truth. 1-shot LLM achieved a 62.9% Micro-F1 score, signif-
icantly outperforming the baseline’s score of 37.2%. Once again,
we observed that the 2-shot setting provided only a modest per-
formance improvement, with relevant answers reaching 84.5% and
Micro-F1 achieving 64.8%. Figure 7-left shows example QA results
from our experiment using 2-shot learning. The LLM can effectively
understand the screen and generate a correct or relevant answer.
For the shown screen, the LLM correctly answers Q1, Q2, and Q4.
For Q3, the LLM generates an answer containing the ground truth

Enabling Conversational Interaction with Mobile UI using Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 7: Left: Example results from the screen QA experiment. The LLM significantly outperforms the off-the-shelf QAmodel
DistillBert (Baseline). Right: Example of the threemetrics used to assess the LLM’s performance on screen QA, including Exact
Match, Contains Ground Truth, and Sub-String of Ground Truth. For each example question, the UI element related to its
ground truth is highlighted with a bounding box with the corresponding color and question index.

"Dec 23rd, 2016" but includes the time within the day "4:50" am. In
contrast, the baseline model trained with standard text question-
answering corpus only managed to answer Q4 correctly; for Q3,
its answer only contains "2016", a sub-string of the ground truth.
Q2 shows that the baseline model sometimes incorrectly retrieves
HTML code from the input screen.

5.4 Mapping Instruction to UI Action
5.4.1 Task Formulation. Given a mobile UI screen and natural
language instruction to control the UI, the model needs to predict
the id of the object to perform the instructed action. For example,
when instructed with "Open Gmail," the model should correctly
identify the Gmail icon on the home screen. This task is useful for
controlling mobile apps using language input such as voice access.

5.4.2 Prompt Construction. We use a preamble of "Given a screen,
an instruction, predict the id of the UI element to perform the instruc-
tion.". The preamble is followed by 𝑁 exemplars consisting of the
screen HTML, instruction, and ground truth id. Here 𝑁 = 0, 1, 2
representing 𝑁 -shot learning. We did not use chain-of-thought
prompting as no intermediate result is needed to be generated for
the task. The output answers are enclosed by special tags <SOI>
and <EOI>, meaning the start and end of the predicted element id,
respectively. An example prompt can be found in appendix A.4.

5.4.3 Experiment Setup. We use the PixelHelp dataset [37], which
contains 187 multi-step instructions for performing everyday tasks
on Google Pixel phones, such as switching Wi-Fi settings or check-
ing emails. We randomly sampled one screen from each unique
app package in the dataset as prompt modules. We then randomly
sampled from the prompt modules to construct the final prompts.
We conducted experiments under two conditions: 1) in-app and

Table 4: Mapping Instruction to UI Action Results

Model Partial Complete

0-shot LLM 1.29 0.00
1-shot LLM (cross-app) 74.69 31.67
2-shot LLM (cross-app) 75.28 34.44
1-shot LLM (in-app) 78.35 40.00
2-shot LLM (in-app) 80.36 45.00

Seq2Act [37] 89.21 70.59

2) cross-app. In the former, the prompt contains a prompt module
from the same app package as the test screen, while in the latter, it
does not. Following the original paper, we report the percentage of
partial matches and complete matches of target element sequences.

5.4.4 Results. Our experimental results (Table 4) show that the
0-shot setting cannot perform the task with nearly zero partial or
complete accuracy. In the cross-app condition, one-shot prompting
significantly achieves 74.69 partial and 31.67 complete, meaning 75%
of elements associated with the instructions were correctly pre-
dicted, and more than 30% tasks are entirely correct. The 2-shot set-
ting offers incremental boosts for both metrics. In the in-app condi-
tion, both the 1-shot and 2-shot settings achieve higher scores than
their counterparts in the cross-app condition. Our best-performing
setting is the 2-shot LLM & in-app, which achieves 80.36 partial
and 45.0 complete accuracy scores. Our approach underperforms
the benchmark results from the Seq2Act model [37], which was
trained on several dedicated datasets with hundreds of thousands
of examples. We do not expect prompting LLMs to consistently

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

outperform benchmarks across all tasks, as the model can only
view a handful of data examples and does not update its underly-
ing parameters [7]. Nevertheless, our approach still demonstrated
competitive performances for the task using only two examples.

6 DISCUSSIONS AND FUTUREWORK
In this section, we discuss the implications of our investigation, the
limitations of our approach, and how future work can build upon
our work.

6.1 Implications for Language-Based
Interaction

An important takeaway from our studies is that prototyping novel
language interactions on mobile UIs can be as easy as designing a data
exemplar. As a result, an interaction designer can rapidly create
functioning mock-ups to test new ideas with end users. Moreover,
developers and researchers can explore different possibilities of a
target task before investing significant efforts into developing new
datasets and models. For example, as discussed in Section 5.2, the
summaries in the Screen2Words dataset follow a particular sentence
structure, while there are many other ways to summarize a screen.
Our approach can allow researchers to quickly inspect various
types of summaries and how they work in different scenarios before
spending efforts developing dedicated datasets and models.

The conversational interaction enabled by our approach is bene-
ficial for accessibility. It can also be blended with other input/output
modalities, such as touch input and screen readers, to offer new
possibilities for multi-modal interaction. Another use case of our
approach is end-user prompting. When a conversational agent fails
to understand or carry out the tasks associated with the user’s com-
mands, prior work has leveraged programming by demonstration
technique that asks users to provide tasks demonstrations to teach
the agent [31, 35]. Our work could augment these techniques to
allow users to teach the model by prompting. With the assistance of
our algorithm, users only need to provide examples of the desired
output, such as which button to click given a language command.
For more complex prompts, such as ones using Chain-of-Thought
prompting, future work can explore using LLMs to assist users in
prompt writing.

6.2 Feasibility Experiments
Our approach showed promising results on each task in the feasibil-
ity experiments. Notably, our work contributes to the literature as
the first to investigate methods to enable Screen Question-Generation
and Screen Question-Answering. Moreover, our approach can gener-
ate screen summaries that are more accurate than the benchmark
model, according to the human evaluation of the Screen Summariza-
tion task. Although our method underperformed the benchmark
for theMapping Instruction to UI Action task, it is worth noting that
our method still achieved competitive accuracy with only two ex-
amples instead of extensive modeling on dedicated datasets like the
benchmark. One possible reason for the underperformance is that
LLMs are trained to generate text instead of selecting (predicting)
an element id, and finetuning LLMs can potentially significantly
boost the accuracy of this task. As the first work in this direction,
our work offers a set of new techniques and findings for using

LLMs to enable conversational interaction. A natural next step is
further examining these techniques by integrating them into an
actual conversational agent.

6.3 Extending to Multi-Screen, Multi-Turn
Conversational Interaction

We focus on unit conversation tasks involving single-turn interac-
tions in this work. Future research can build upon our techniques
to enable multi-screen [8] and multi-turn [30] conversational in-
teractions. Multi-screen interactions can allow the agent to carry
out complex tasks across various screens. For example, to help a
user book a hotel room, an agent could start by asking which hotel
the user wants to book and then search for that hotel (Figure 1-1:
Screen Question-Generation). Once the search results are obtained,
the agent could announce a summary of the search result page
(Figure 1-2: Screen Summary). After that, the user could then ask for
specific information from the search results, such as the room rates
(Figure 1-3: Screen Question-Answering), and finally, the user could
command the agent to book the desired room (Figure 1-4: Mapping
Instruction to UI Actions). Multi-turn interactions can enable the
agent to ask for clarifications on ambiguous cases [32] or recover
from errors. For example, given the screen in Figure 3 with two
emails sent from Google Play, if the user says, "Open the email sent
by Google Play", our current approach would likely select one of
them directly without clarifying with the users. A sophisticated
agent should identify ambiguity and ask the user for clarification,
such as, "Do you mean the one sent on Dec. 4th or Nov. 12th?" To
achieve multi-screen and multi-turn interactions with the proposed
approach, future work will need to investigate methods to store
and represent past screens and interactions as contexts [43].

6.4 Shots, Input Lengths, and Model
Performance

Our findings indicate that the first prompt exemplar usually signifi-
cantly boosts LLM performance in mobile UI tasks. In contrast, the
inclusion of a second example only results in a marginal improve-
ment. Previous research by Reynolds and McDonell [46] suggests
that the effectiveness of few-shot prompting lies within guiding
LLMs to locate specific task locations in the model’s existing space
of learned tasks. Therefore, the first shot may be the most helpful,
and additional examples may provide only marginal benefits in
narrowing the model’s focus. Relevantly, language models often
have input length constraints, which limit the number of exemplars
that can be included in the prompt. The length of a screen HTML
has a considerable variance, depending on how much information
was conveyed through the view hierarchy and the inherent com-
plexity of the screen. Future work could explore approaches to
prevent exceeding the input length limit. One potential approach is
to dynamically select prompt screens with different lengths. When
the test screen HTML is lengthy, shorter prompt screens could be
selected. However, it is unclear whether imbalanced lengths be-
tween prompt and test screens would lead to inferior performances.
Future research could investigate the trade-off between the number
of shots, the length of each shot, and their impact on the model’s
performance in different UI tasks.

Enabling Conversational Interaction with Mobile UI using Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

As modeling techniques advance, the input length restrictions
of language models would likely be lifted [57], allowing for more
information to be included in prompts. Another direction for future
work is to develop methods for condensing screen HTML into a
more concise syntax while still achieving comparable performance.
In addition, to enable real-time applications, future research may
investigate strategies such as model distillation [16] and model
compression [15] for more efficient inference of LLMs.

6.5 Screen Representation
Mobile UI screens contain multiple modalities, including pixels,
texts, and even audio when media content is present. A limitation
of our investigation is that we only use the view hierarchy infor-
mation, which is converted to an HTML representation, and leave
other modalities unused. This limitation is imposed by the type of
input expected by LLMs. While our studies showed LLMs could
perform decently on various UI tasks, they could fail in cases re-
quiring information not present in the view hierarchy but available
as pixels. For instance, many icons or images on UI screens have
missing captions or alt texts (text description of a visual element),
and LLMs may not be able to perform tasks based on these elements.
Moreover, visual information is particularly crucial for some apps,
e.g., photo editing tools, and our approachmay fall short of enabling
conversational interaction based on these apps. Many models have
started using multiple modalities, including visual and text infor-
mation of UIs [8, 38, 50, 58]. Future work could exploit these prior
models to generate missing captions or alt-text of elements, which
can lead to more comprehensive screen information in the HTML
input to LLMs. Our approach can also be extended by leveraging
large-scale vision language models such as Flamingo [4] to encode
a screen’s visual and structural information for few-shot learning.

6.6 Steerability and Reliability of LLM
Predictions

Our experiments uncovered several promising capabilities of LLMs
for mobile UI tasks. For example, the model showcased the behavior
of question combination, i.e., merging relevant input fields into a
single question, in the Screen Question-Generation task. Further-
more, our study shows that the model can utilize its embedded
prior knowledge to provide additional information in the Screen
Summarization task. While these capabilities are intriguing and
potentially useful, there is currently a lack of direct controls for
steering LLMs in terms of when and how these behaviors should
occur. Additionally, LLMs, as other natural language generation
models, could sometimes produce unintended text, known as hallu-
cinations [19]. This means that the model may produce incorrect
or irrelevant information. Our current method does not explicitly
address this issue. As the research surrounding LLMs develops, it
is crucial to find ways to improve the steerability and reliability
of their predictions and behaviors, especially when incorporating
LLMs into user-facing technology.

6.7 Generalizing Beyond Mobile UIs
This paper focuses on mobile UIs, but the proposed approach with
LLMs can also be applied to other UI types, such as web UIs [1]
(which are already in HTML syntax) and popular UI systems like

iOS and macOS that possess view hierarchy data or equivalence.
However, for more sophisticated and feature-rich UIs like video edi-
tors, a direct adaptation of our approach may be challenging due to
the difficulty in representing key features in text format and ensur-
ing the representation complies with model length constraints, as
highlighted in the previous discussions. Nonetheless, our research
provides a solid foundation for further studies to build upon and
develop innovative methods that enable language interaction with
graphical user interfaces.

7 CONCLUSION
We investigated the feasibility of prompting LLMs to enable vari-
ous conversational interactions on mobile UIs. By categorizing the
conversation scenarios between users and agents during mobile
tasks, we identified four crucial UI tasks to study. We proposed a
suite of prompting techniques for adapting LLMs to mobile UIs. We
conducted extensive experiments with the four selected tasks to
evaluate the effectiveness of our approach. The results showed that
compared to traditional machine learning pipelines that consist of
expensive data collection andmodel training, one could rapidly real-
ize novel language-based interactions using LLMs while achieving
competitive performance.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback
during the R&R process that enhanced the paper’s quality. We
appreciate the discussions and feedback from our team members
Chin-Yi Cheng and Tao Li. We also acknowledge the early-stage
feedback from Michael Terry and Minsuk Chang. Special thanks to
the Google Data Compute team for their invaluable assistance in
data collection.

REFERENCES
[1] Adept. 2022. ACT-1: Transformer for Actions. https://www.adept.ai/act
[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,

Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan,
Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil J Joshi,
Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine,
Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton
Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun
Xu, Mengyuan Yan, and Andy Zeng. 2022. Do As I Can, Not As I Say: Grounding
Language in Robotic Affordances. https://doi.org/10.48550/ARXIV.2204.01691

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana
Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman
Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei,
Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida
Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol
Vinyals, Andrew Zisserman, and Karen Simonyan. 2022. Flamingo: a Visual
Language Model for Few-Shot Learning. https://doi.org/10.48550/ARXIV.2204.
14198

[4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana
Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman
Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei,
Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida
Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol
Vinyals, Andrew Zisserman, and Karen Simonyan. 2022. Flamingo: a Visual
Language Model for Few-Shot Learning. https://doi.org/10.48550/ARXIV.2204.
14198

[5] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In
Proceedings of the IEEE international conference on computer vision. 2425–2433.

https://www.adept.ai/act
https://doi.org/10.48550/ARXIV.2204.01691
https://doi.org/10.48550/ARXIV.2204.14198
https://doi.org/10.48550/ARXIV.2204.14198
https://doi.org/10.48550/ARXIV.2204.14198
https://doi.org/10.48550/ARXIV.2204.14198

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

[6] Richard A Bolt. 1980. “Put-that-there” Voice and gesture at the graphics interface.
In Proceedings of the 7th annual conference on Computer graphics and interactive
techniques. 262–270.

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[8] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and
Bryan A. Plummer. 2022. A Dataset for Interactive Vision-Language Navigation
with UnknownCommand Feasibility. https://doi.org/10.48550/ARXIV.2202.02312

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311 (2022).

[10] John Joon Young Chung, Wooseok Kim, Kang Min Yoo, Hwaran Lee, Eytan Adar,
and Minsuk Chang. 2022. TaleBrush: Visual Sketching of Story Generation with
Pretrained Language Models. In Extended Abstracts of the 2022 CHI Conference
on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI EA ’22).
Association for Computing Machinery, New York, NY, USA, Article 172, 4 pages.
https://doi.org/10.1145/3491101.3519873

[11] Hai Dang, Lukas Mecke, Florian Lehmann, Sven Goller, and Daniel Buschek. 2022.
How to Prompt? Opportunities and Challenges of Zero- and Few-Shot Learning
for Human-AI Interaction in Creative Applications of Generative Models. https:
//doi.org/10.48550/ARXIV.2209.01390

[12] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
Symposium on User Interface Software and Technology (UIST ’17).

[13] Asbjørn Følstad and Petter Bae Brandtzæg. 2017. Chatbots and the new world of
HCI. interactions 24, 4 (2017), 38–42.

[14] Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022. News Summarization and
Evaluation in the Era of GPT-3. https://doi.org/10.48550/ARXIV.2209.12356

[15] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. https://doi.org/10.48550/ARXIV.1510.00149

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the Knowledge in
a Neural Network. https://doi.org/10.48550/ARXIV.1503.02531

[17] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems. 159–166.

[18] Yu-Chung Hsiao, Fedir Zubach, Maria Wang, and Chen Jindong. 2022. ScreenQA:
Large-Scale Question-Answer Pairs over Mobile App Screenshots. https://doi.
org/10.48550/ARXIV.2209.08199

[19] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Yejin Bang, Andrea Madotto, and Pascale Fung. 2022. Survey of Hallucination in
Natural Language Generation. ACM Comput. Surv. (nov 2022). https://doi.org/
10.1145/3571730 Just Accepted.

[20] Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra Molina, Aaron Donsbach,
Michael Terry, and Carrie J Cai. 2022. PromptMaker: Prompt-Based Prototyping
with Large Language Models. In Extended Abstracts of the 2022 CHI Conference
on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI EA ’22).
Association for Computing Machinery, New York, NY, USA, Article 35, 8 pages.
https://doi.org/10.1145/3491101.3503564

[21] Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J Cai, and Michael Terry. 2022. Discovering the Syntax and
Strategies of Natural Language Programming with Generative Language Models.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New
York, NY, USA, Article 386, 19 pages. https://doi.org/10.1145/3491102.3501870

[22] Clare-Marie Karat, John Vergo, and David Nahamoo. 2002. Conversational inter-
face technologies. In The human-computer interaction handbook: fundamentals,
evolving technologies and emerging applications. 169–186.

[23] Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim. 2022. Stylette: Styling the
Web with Natural Language. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association
for Computing Machinery, New York, NY, USA, Article 5, 17 pages. https:
//doi.org/10.1145/3491102.3501931

[24] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large Language Models are Zero-Shot Reasoners. https:
//doi.org/10.48550/ARXIV.2205.11916

[25] Mina Lee, Percy Liang, and Qian Yang. 2022. CoAuthor: Designing a Human-AI
Collaborative Writing Dataset for Exploring Language Model Capabilities. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New
York, NY, USA, Article 388, 19 pages. https://doi.org/10.1145/3491102.3502030

[26] Yoonjoo Lee, John Joon Young Chung, Tae Soo Kim, Jean Y Song, and Juho
Kim. 2022. Promptiverse: Scalable Generation of Scaffolding Prompts Through
Human-AI Hybrid Knowledge Graph Annotation. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 96,
18 pages. https://doi.org/10.1145/3491102.3502087

[27] Yoonjoo Lee, Tae Soo Kim, Minsuk Chang, and Juho Kim. 2022. Interactive
Children’s Story Rewriting Through Parent-Children Interaction. In Proceedings
of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing
2022). 62–71.

[28] Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta. 2022. Describing UI Screen-
shots in Natural Language. ACM Trans. Intell. Syst. Technol. 14, 1, Article 19 (nov
2022), 28 pages. https://doi.org/10.1145/3564702

[29] Gang Li, Gilles Baechler, Manuel Tragut, and Yang Li. 2022. Learning to Denoise
Raw Mobile UI Layouts for Improving Datasets at Scale. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 67,
13 pages. https://doi.org/10.1145/3491102.3502042

[30] Tao Li, Gang Li, Jingjie Zheng, Purple Wang, and Yang Li. 2022. MUG: Interactive
Multimodal Grounding on User Interfaces. https://doi.org/10.48550/ARXIV.2209.
15099

[31] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[32] Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M Mitchell, and Brad A Myers.
2020. Multi-modal repairs of conversational breakdowns in task-oriented dialogs.
In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology. 1094–1107.

[33] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi,
Wanling Ding, Tom M. Mitchell, and Brad A. Myers. 2018. APPINITE: A
Multi-Modal Interface for Specifying Data Descriptions in Programming by
Demonstration Using Natural Language Instructions. In 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). 105–114.
https://doi.org/10.1109/VLHCC.2018.8506506

[34] Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. 2021.
Screen2vec: Semantic embedding of gui screens and gui components. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

[35] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, TomM. Mitchell,
and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent That Learns Concepts
and Conditionals from Natural Language and Demonstrations. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology
(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 577–589. https://doi.org/10.1145/3332165.3347899

[36] Toby Jia-Jun Li and Oriana Riva. 2018. Kite: Building Conversational Bots from
Mobile Apps. In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services (Munich, Germany) (MobiSys ’18). Association
for Computing Machinery, New York, NY, USA, 96–109. https://doi.org/10.1145/
3210240.3210339

[37] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Map-
ping Natural Language Instructions to Mobile UI Action Sequences. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics, Online, 8198–8210. https:
//doi.org/10.18653/v1/2020.acl-main.729

[38] Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei (Wei) Guan.
2020. Widget Captioning: Generating Natural Language Description for Mobile
User Interface Elements. https://www.aclweb.org/anthology/2020.emnlp-main.
443.pdf

[39] Yang Li, Gang Li, Xin Zhou, Mostafa Dehghani, and Alexey Gritsenko. 2021. VUT:
Versatile UI Transformer for Multi-Modal Multi-Task User Interface Modeling.
arXiv preprint arXiv:2112.05692 (2021).

[40] Yang Li, Gang Li, Xin Zhou, Mostafa Dehghani, and Alexey Gritsenko. 2021. VUT:
Versatile UI Transformer for Multi-Modal Multi-Task User Interface Modeling.
https://doi.org/10.48550/ARXIV.2112.05692

[41] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang.
2018. Reinforcement Learning on Web Interfaces Using Workflow-Guided Explo-
ration. arXiv:1802.08802 [cs.AI]

[42] Yihe Liu, AnushkMittal, Diyi Yang, andAmyBruckman. 2022. Will AI ConsoleMe
When I Lose My Pet? Understanding Perceptions of AI-Mediated Email Writing.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New
York, NY, USA, Article 474, 13 pages. https://doi.org/10.1145/3491102.3517731

[43] OpenAI. 2022. CHATGPT: Optimizing language models for dialogue. https:
//openai.com/blog/chatgpt/

[44] Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin Guu, and Percy Liang.
2018. Mapping natural language commands to web elements. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Brussels, Belgium, 4970–4976. https:

https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2202.02312
https://doi.org/10.1145/3491101.3519873
https://doi.org/10.48550/ARXIV.2209.01390
https://doi.org/10.48550/ARXIV.2209.01390
https://doi.org/10.48550/ARXIV.2209.12356
https://doi.org/10.48550/ARXIV.1510.00149
https://doi.org/10.48550/ARXIV.1503.02531
https://doi.org/10.48550/ARXIV.2209.08199
https://doi.org/10.48550/ARXIV.2209.08199
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3491101.3503564
https://doi.org/10.1145/3491102.3501870
https://doi.org/10.1145/3491102.3501931
https://doi.org/10.1145/3491102.3501931
https://doi.org/10.48550/ARXIV.2205.11916
https://doi.org/10.48550/ARXIV.2205.11916
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.1145/3491102.3502087
https://doi.org/10.1145/3564702
https://doi.org/10.1145/3491102.3502042
https://doi.org/10.48550/ARXIV.2209.15099
https://doi.org/10.48550/ARXIV.2209.15099
https://doi.org/10.1109/VLHCC.2018.8506506
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://www.aclweb.org/anthology/2020.emnlp-main.443.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.443.pdf
https://doi.org/10.48550/ARXIV.2112.05692
https://arxiv.org/abs/1802.08802
https://doi.org/10.1145/3491102.3517731
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.18653/v1/D18-1540

Enabling Conversational Interaction with Mobile UI using Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

//doi.org/10.18653/v1/D18-1540
[45] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.

Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[46] Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. https://doi.org/10.48550/ARXIV.
2102.07350

[47] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. https:
//doi.org/10.48550/ARXIV.1910.01108

[48] Zhanna Sarsenbayeva, Niels van Berkel, Chu Luo, Vassilis Kostakos, and Jorge
Goncalves. 2017. Challenges of situational impairments during interaction with
mobile devices. In Proceedings of the 29th Australian Conference on Computer-
Human Interaction. 477–481.

[49] Kashyap Todi, Luis A. Leiva, Daniel Buschek, Pin Tian, and Antti Oulasvirta.
2021. Conversations with GUIs. In Proceedings of the ACM SIGCHI Conference on
Designing Interactive Systems (DIS ’21’). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3461778.3462124

[50] Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang
Li. 2021. Screen2Words: Automatic Mobile UI Summarization with Multimodal
Learning. In The 34th Annual ACM Symposium on User Interface Software and
Technology (Virtual Event, USA) (UIST ’21). Association for ComputingMachinery,
New York, NY, USA, 498–510. https://doi.org/10.1145/3472749.3474765

[51] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou.
2022. Rationale-Augmented Ensembles in Language Models. https://doi.org/10.
48550/ARXIV.2207.00747

[52] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682
(2022).

[53] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2022. Chain of Thought Prompting Elicits
Reasoning in Large Language Models. https://doi.org/10.48550/ARXIV.2201.
11903

[54] Jacob O Wobbrock. 2019. Situationally aware mobile devices for overcoming situ-
ational impairments. In Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. 1–18.

[55] Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P Bigham. 2021. Screen Parsing:
Towards Reverse Engineering of UI Models from Screenshots. In The 34th Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’21). Association for Computing Machinery, New York, NY, USA, 470–483.
https://doi.org/10.1145/3472749.3474763

[56] TongshuangWu, Michael Terry, and Carrie Jun Cai. 2022. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (NewOrleans, LA, USA) (CHI ’22). Association for Computing Machinery,
New York, NY, USA, Article 385, 22 pages. https://doi.org/10.1145/3491102.
3517582

[57] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr
Ahmed. 2020. Big Bird: Transformers for Longer Sequences. (2020). https:
//doi.org/10.48550/ARXIV.2007.14062

[58] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, Aaron Everitt, and
Jeffrey P Bigham. 2021. Screen Recognition: Creating Accessibility Metadata for
Mobile Applications from Pixels. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association
for Computing Machinery, New York, NY, USA, Article 275, 15 pages. https:
//doi.org/10.1145/3411764.3445186

[59] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. 2022. Least-to-Most
Prompting Enables Complex Reasoning in Large Language Models. https:
//doi.org/10.48550/ARXIV.2205.10625

A EXAMPLE PROMPTS FOR FEASIBILITY
EXPERIMENTS TASKS

We show the prompt examples used in each task from the fea-
sibility experiments. For screen summarization, screen QA, and
mapping instruction to UI action, we include 1-shot prompts for
simplicity. For the screen question-generation study, we include
the 2-shot prompt–one exemplar uses question combination (the
second screen), and the other does not. Both exemplars contain a
chain of thoughts consisting of intermediate results.

A.1 Screen Question-Generation

1 Given a screen , the agent needs to identify the elements

requiring user input and generates corresponding

questions.

2

3 Screen:

4 <p id=0 class="alertTitle"> Create password </p>

5 <div id=1 class="titleDivider"> </div>

6 <input id=2 class="password"> Crowd3116 </input>

7 <input id=3 class="confirm password"> Crowd3116 </input

>

8 <input id=4 class="hint"> c3 </input>

9 <input id=5 class="edEmailAddress"> appcrawler4@gmail.

com </input>

10 <p id=6 class="tvEmailAddressInfo"> This email address

will be used to reset your password. </p>

11 <button id=7 class="button2"> Cancel </button >

12 <button id=8 class="button1"> OK </button >

13

14 Now reasoning starts:

15 Q: How many input tags are there on the screen?

16 A: 4

17 Q: What is the purpose of the screen?

18 A: Create password.

19

20 It 's a create password page and there are 4 input tags ,

including:

21 1. id=2 asks for password.

22 2. id=3 asks to confirm password.

23 3. id=4 asks for hint.

24 4. id=5 asks for email address.

25

26 To help the user proceed with the screen , an agent will

ask:

27 <SOQ>What password do you want to create? (id=2)<EOQ>

28 <SOQ>Could you enter the password again to confirm? (id

=3)<EOQ>

29 <SOQ>What hint do you want to set? (id=4)<EOQ>

30 <SOQ>What is your email in case you need to reset the

password? (id=5)<EOQ>

31

32 Screen:

33 <p id=0> IRS2Go , </p>

34 <button id=1 alt="Open navigation drawer"> </button >

35 <p id=2 class="titleRefund"> Refund Status </p>

36 <p id=3 class="refundHeaderText"> Check your refund

status by entering your information as shown on your

2015 tax return. This tool is updated no more than

once every 24 hours , usually overnight. </p>

37 <input id=4 class="taxId3Edit" alt="First 3 Digits of

Social Security Number"> </input>

38 <p id=5 class="dash1"> - </p>

39 <input id=6 class="taxId2Edit" alt="Middle 2 Digits of

Social Security Number"> </input>

40 <p id=7 class="dash2"> - </p>

41 <input id=8 class="taxId4Edit" alt="Last 4 Digits of

Social Security Number"> </input>

42 <p id=9> Filing Status </p>

43 <input id=10 class="refundAmountEdit"> </input>

44 <button id=11 class="privacyNoticeButton" alt="Privacy

Notice"> Privacy Notice , </button >

45 <button id=12 class="getStatusButton" alt="Get Status">

GET STATUS , </button >

46 <div id=13 class="navigationBarBackground"> </div>

47 <div id=14 class="statusBarBackground"> </div>

48

49 Now reasoning starts:

50 Q: How many input tags are there on the screen?

https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.48550/ARXIV.2102.07350
https://doi.org/10.48550/ARXIV.2102.07350
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.1145/3461778.3462124
https://doi.org/10.1145/3472749.3474765
https://doi.org/10.48550/ARXIV.2207.00747
https://doi.org/10.48550/ARXIV.2207.00747
https://doi.org/10.48550/ARXIV.2201.11903
https://doi.org/10.48550/ARXIV.2201.11903
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.48550/ARXIV.2007.14062
https://doi.org/10.48550/ARXIV.2007.14062
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.1145/3411764.3445186
https://doi.org/10.48550/ARXIV.2205.10625
https://doi.org/10.48550/ARXIV.2205.10625

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

51 A: 4

52 Q: What is the purpose of the screen?

53 A: Check your refund status.

54

55 It 's a check refund status page and there are 4 input

tags , including:

56 1. id=4 asks for first 3 digits of SSN

57 2. id=6 asks for middle 2 digits of SSN

58 3. id=8 asks for last 4 digits of SSN

59 4. id=10 asks for the amount of refund.

60

61 To help the user proceed with the screen , an agent will

ask:

62 <SOQ>What is your SSN? (id=4, id=6, id=8)<EOQ>

63 <SOQ>What is the refund amount? (id=10)<EOQ>

64 """

Listing 1: 2-shot example prompt for screen question-
generation.

A.2 Screen Summarization
1 Given a screen , summarize its purpose.

2

3 Screen:

4

5 <p id=1 class="cliv name textview"> Create new contact <

/p>

6

7 <p id=3 class="cliv name textview"> Add to a contact </p

>

8

9 <p id=5 class="cliv name textview"> Send SMS </p>

10 <button id=6 class="floating action button" alt="dial pad

"> </button >

11 <button id=7 class="search back button" alt="stop

searching"> </button >

12 <input id=8 class="search view"> 18773312998 </input >

13

14 <div id=10 class="navigationBarBackground"> </div>

15 <div id=11 class="statusBarBackground"> </div>

16

17 Summary: <SOS>Screen of contact settings options <EOS>

Listing 2: 1-shot example prompt for screen summarization.

A.3 Screen Question-Answering
1 Given a mobile screen and a question , provide the answer

based on the screen information.

2

3 Screen:

4 <p id=0> Invite for T20 Fans Live Chat </p>

5 <button id=1 alt="Choose account"> </button >

6 <p id=2 class="menu send" alt="Send"> </p>

7 <p id=3 class="message header"> Message </p>

8 <input id=4 class="message"> Join me on T20 Fans Live

chat. </input>

9 <div id=5 class="message separator"> </div>

10 <p id=6 class="message limit"> </p>

11 <div id=7 class="separator"> </div>

12 <p id=8 class="selection"> Add recipients </p>

13 <div id=9 class="separator"> </div>

14 <p id=10 class="text"> Suggestions from Google </p>

15 <p id=11> A, </p>

16 <p id=12 class="name"> appcrawler5@gmail.com </p>

17 <p id=13 class="contact detail"> appcrawler5@gmail.com <

/p>

18

19 <div id=15 class="divider"> </div>

20 <p id=16> A, </p>

21 <p id=17 class="name"> appcrawler4@gmail.com </p>

22 <p id=18 class="contact detail"> appcrawler4@gmail.com <

/p>

23

24 <div id=20 class="divider"> </div>

25 <p id=21 class="text"> Everyone </p>

26

27 <p id=23 class="name"> App Crawler </p>

28 <p id=24 class="contact detail"> (415) 336 -5454 </p>

29

30

31 <div id=27 class="divider"> </div>

32 <p id=28> T, </p>

33 <p id=29 class="name"> test , </p>

34 <p id=30 class="contact detail"> (415) 336 -5454 </p>

35

36

37 <div id=33 class="divider"> </div>

38 <div id=34 class="navigationBarBackground"> </div>

39 <div id=35 class="statusBarBackground"> </div>

40

41 Q: What email addresses are there?

42 A: <SOA>appcrawler5@gmail.com<EOA>

Listing 3: 1-shot example prompt for screen question-
answering

A.4 Mapping Instruction to UI Action
1 Given a screen , an instruction , predict the id of the UI

element to perform the instruction.

2

3 Screen:

4 <div id=0 alt="Apps list"> </div>

5

6

7 <p id=3 class="icon" alt="Calculator"> Calculator </p>

8 <p id=4 class="icon" alt="Calendar"> Calendar </p>

9 <p id=5 class="icon" alt="Camera"> Camera </p>

10 <p id=6 class="icon" alt="Chrome"> Chrome </p>

11 <p id=7 class="icon" alt="Clock"> Clock </p>

12 <p id=8 class="icon" alt="Contacts"> Contacts </p>

13 <p id=9 class="icon" alt="Custom Locale"> Custom Locale

</p>

14 <p id=10 class="icon" alt="Dev Tools"> Dev Tools </p>

15 <p id=11 class="icon" alt="Drive"> Drive </p>

16 <p id=12 class="icon" alt="Files"> Files </p>

17 <p id=13 class="icon" alt="Gmail"> Gmail </p>

18 <p id=14 class="icon" alt="Google"> Google </p>

19 <p id=15 class="icon" alt="Hangouts"> Hangouts </p>

20 <p id=16 class="icon" alt="Maps"> Maps </p>

21 <p id=17 class="icon" alt="Messages"> Messages </p>

22 <p id=18 class="icon" alt="Phone"> Phone </p>

23 <p id=19 class="icon" alt="Photos"> Photos </p>

24 <p id=20 class="icon" alt="Play Movies & TV"> Play Movies

& TV </p>

25 <p id=21 class="icon" alt="Play Music"> Play Music </p>

26 <p id=22 class="icon" alt="Settings"> Settings </p>

27 <p id=23 class="icon" alt="WebView Browser Tester">

WebView Browser Tester </p>

28 <p id=24 class="icon" alt="YouTube"> YouTube </p>

29 <p id=25 class="icon" alt="Photos"> Photos </p>

30 <p id=26 class="icon" alt="Maps"> Maps </p>

31 <p id=27 class="icon" alt="Contacts"> Contacts </p>

32 <p id=28 class="icon" alt="Settings"> Settings </p>

33 <p id=29 class="icon" alt="Clock"> Clock </p>

Enabling Conversational Interaction with Mobile UI using Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

34 <div id=30 class="fast scroller"> </div>

35 <div id=31> </div>

36 <div id=32 class="hotseat"> </div>

37

38 Instruction: Open your device 's Clock app.

39 Prediction: id=<SOI>29<EOI>

Listing 4: 1-shot example prompt for mapping instruction
to UI action.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Bridging GUIs with Natural Language
	2.2 Prompting Pre-trained Large Language Models
	2.3 Interactive Applications of Large Language Models

	3 Conversation for Mobile UI Tasks
	3.1 Agent-initiated Conversation
	3.2 User-initiated Conversation

	4 Prompting Large-Language Models for Mobile UI Tasks
	4.1 Screen Representation
	4.2 Chain-of-Thought Prompting
	4.3 Prompt Structure

	5 Feasibility Experiments
	5.1 Screen Question-Generation
	5.2 Screen Summarization
	5.3 Screen Question-Answering (QA)
	5.4 Mapping Instruction to UI Action

	6 Discussions and Future Work
	6.1 Implications for Language-Based Interaction
	6.2 Feasibility Experiments
	6.3 Extending to Multi-Screen, Multi-Turn Conversational Interaction
	6.4 Shots, Input Lengths, and Model Performance
	6.5 Screen Representation
	6.6 Steerability and Reliability of LLM Predictions
	6.7 Generalizing Beyond Mobile UIs

	7 Conclusion
	Acknowledgments
	References
	A Example Prompts for Feasibility Experiments Tasks
	A.1 Screen Question-Generation
	A.2 Screen Summarization
	A.3 Screen Question-Answering
	A.4 Mapping Instruction to UI Action

