Enabling Conversational Interaction with Mobile UI Using Large Language Models
Informations
Type:
inproceedings
Auteurs:
Wang, Bryan and Li, Gang and Li, Yang
Pertinence:
Moyenne
Référence:
Doi:
10.1145/3544548.3580895
Mots-clés:
Mobile UI, Large Language Models, Conversational Interaction
Url:
https://doi.org/10.1145/3544548.3580895
Date de publication:
04/2023
Résumé:
Poser des questions par rapport à l'UI d'un téléphone + exécuter des actions
Abstract:
Conversational agents show the promise to allow users to interact with mobile devices using language. However, to perform diverse UI tasks with natural language, developers typically need to create separate datasets and models for each specific task, which is expensive and effort-consuming. Recently, pre-trained large language models (LLMs) have been shown capable of generalizing to various downstream tasks when prompted with a handful of examples from the target task. This paper investigates the feasibility of enabling versatile conversational interactions with mobile UIs using a single LLM. We designed prompting techniques to adapt an LLM to mobile UIs. We experimented with four important modeling tasks that address various scenarios in conversational interaction. Our method achieved competitive performance on these challenging tasks without requiring dedicated datasets and training, offering a lightweight and generalizable approach to enable language-based mobile interaction.
Pdf:
Lien pdf
Références
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Citations
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Mots-clés
3 mots-clés
Nom Nombre d'articles Actions
Large Language Models 6
Conversational Interaction 2
Mobile UI 1
Auteurs
4 auteurs
Nom Nombre d'articles Actions
Yang 2
Bryan and Li 1
Wang 1
Gang and Li 1