What Can’t Large Language Models Do? The Future of AI-Assisted Academic Writing
Informations
Type:
inproceedings
Auteurs:
Fok, Raymond and Weld, Daniel S
Pertinence:
Haute
Référence:
Doi:
10.1609/aiide.v18i1.21955
Mots-clés:
Url:
https://cdn.glitch.global/d058c114-3406-43be-8a3c-d3afff35eda2/paper4_2023.pdf
Date de publication:
12/2022
Résumé:
Discussion de l'utilisation des LLM pour la rédaction de cours. Identification de problèmes à résoudre.
Abstract:
Large language models have revolutionized the way we interact with the world around us, yet their relative nascency suggests its transformative potential on society is still underexplored. Applications built on these models have excelled at summarizing articles, engaging in realistic conversations, and writing creative stories. However, there remain open questions in how we can design tools that effectively leverage these models to support complex, cognitive demanding, and factual writing processes. In this position paper, we consider emergent paradigms in human-AI collaborative writing and their implications on future academic writing assistants.
Pdf:
Lien pdf
Références
1 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Where to Hide a Stolen Elephant: Leaps in Creative Writing with Multimodal Machine Intelligence article Haute Singh, Nikhil and Bernal, Guillermo and Savchenko, Daria and Glassman, Elena L. 02/2022 0 4
Citations
0 articles
Titre Type Pertinence Auteurs Date Publication Références Citations Actions
Pas encore d'article
Mots-clés
0 mots-clés
Nom Nombre d'articles Actions
Pas encore de mot-clé
Auteurs
3 auteurs
Nom Nombre d'articles Actions
Fok 1
Daniel S 1
Raymond and Weld 1